EE327 Digital Signal Processing Linear Systems and Signals Yasser F. O. Mohammad

REMINDER 1: ADC

REMINDER 2: Sampling

• Our goal is to be able to reconstruct the analog signals completely from the digitized version (ignoring quantization).

REMINDER 3: Nyquist Frequency

- Half the sampling rate
- The maximum frequency representable in the discrete signal without aliasing

$$f_n = \frac{f_s}{2}$$

REMINDER 4: Aliasing

Aliasing causes information loss about both high and low frequencies

REMINDER 5: Complete ADC/DAC system

SELF TEST: Why do we need an antialiasing filter even if we are not interested in signals over the Nyquest frequency?

Let is play a game

- What is in the box
 - Elephant
 - Linear System
 - Nonlinear System

• Ask me

Signal and System

- Signal
 - Description of how a quantity(s) is varying with some parameter(s)
- System
 - Any process that produces an output signal in response to an input signal

Types of Systems

Linear Systems

- Linear = Homogeneous+Additive
- Homogeneity

• If $X[n] \rightarrow Y[n]$ then $k X[n] \rightarrow k Y[n]$

- Additive
 - If $X_1[n] \rightarrow Y_1[n]$ and $X_2[n] \rightarrow Y_2[n]$ then $X_1[n] + X_2[n] \rightarrow Y_1[n] + Y_2[n]$

Most DSP linear systems are also shift invariant (LTI)

Shift Invariance

Static Linearity

- How the system responses to nonvarying input (DC)?
 If it is linear → Y=aX and *a* is a constant
- Linear System → Static Linearity but Static Linearity ≯ Linear System

Memoryless systems

• The output depends only on instantaneous input not the history

How to prove Linearity (until now)

Homogeneous + Additive = Linear

Static Linearity + Memoryless → Linear

• Linear \rightarrow Static Linearity

Sinusoidal Fidelity

- Linear system \rightarrow sinusoidal output for sinusoidal input
- Sinusoidal Fidelity → Linear System
 - (e.g. phase Lock Loop)
- This is why we can work with AC circuits using only two numbers (amplitude and phase)
- This is why Fourier Analysis is important
- This is partially why Linear Systems are important
- This is why you cannot see DSP without *sin*

Properties of Linearity-Commutative

IF x[n] System System В А THEN x[n] System System

Properties of Linearity – Superposition

IF

Properties of Linearity –

Multiple inputs and/or outputs

iff Linear it be can $x_1[n]$ System B $y_1[n]$ System decomposed linear А into subsystems connected with $x_2[n]$ System $y_2[n]$ C only additions

 $x_3[n]$

System

D

System E y₃[n]

Synthesis and Decomposition

- Synthesis
 - Combine signals to produce complex ones
- Decomposition
 - Decompose complex signals into simpler ones

Fundamental Concept of DSP

Common Decompositions

- 1. Impulse Decomposition
- 2. Step Decomposition
- 3. Even/Odd Decomposition
- 4. Interlaced Decomposition
- 5. Fourier Decomposision

Impulse and Step Decompositions

Even/Odd and Interlaced

Fourier Decomposition

- Why sinusoidal?
- Periodic Time Domain \rightarrow Discrete Frequency Domain
- Discrete Time Domain \rightarrow Periodic Frequency Domain

		Periodicity	
Continuity		Periodic	aperiodic
	continuous	Fourier Series Aperiodic Spectrum Discrete Spectrum	Fourier Transform Aperiodic Spectrum Continuous Spectrum
	discrete	Discrete Fourier Transform Periodic Spectrum Discrete Spectrum	Discrete Fourier Transform Periodic Spectrum Continuous Spectrum

What if it was not linear?

- First (and usually last) option
 - Assume it is linear
 - If nonlinearity is small it will work (some times even if it is large!!!!)
 - Keep it small
 - Keep it short
 - Linearize it
 - E.g. take the log to convert * into +