
Yasser F. O. MohammadYasser F. O. Mohammad

REMINDER 1: Statement Anatomy
� [name] [mnemonic] [operand(s)] [; comment]
� Zerocount: mov ecx,0 ; initialize counter

� Name
� Ends with colon ‘:’ for instructions but not directivesEnds with colon ‘:’ for instructions but not directives

� Mnemonic
� Indicates what the statement is about

� Operands
� Optional and separated with comas

� Comment
� Optional and starts with a semicolon

REMINDER 2: MOVs not allowed
� Source and destination in memory

� To and from FLAG register

� To and from IP

Source and destination are segment registers� Source and destination are segment registers

� Immediate to segment register

� Operands are not same size

REMINDER 3: XCHG
� xchg source1,source2

� Exchange the two values

� Equals 3 moves

Explicit Size Declaration
� The problem:

� mov [ebx], 0

� The solution:� The solution:

� mov BYTE PTR [ebx],0

� mov WORD PTR [ebx],0

� mov DWORD PTR [ebx],0

Addition and Subtraction
� add destination, source

� Dest=dest+source

� sub destination, source
� Dest=dest-source

� inc operand� inc operand
� operand=operand+1

� dec operand
� operand=operand-1

� neg operand
� Operand=-operand (2’s complement)

� Why 2’s complement???

� Careful: SF does not mean sign if the inputs are unsigned

Example Additions and Subtractions

Why do we use 2’s Complement
� Arithmetic operations are the same in unsigned and 2’s complement

representations

BUT

� Flags mean different things� Flags mean different things
� SF

� Signed: sign
� Unsigned: MSB

� CF
� Signed:
� Unsigned: too large result

� OF
� Signed: too small or too large result
� Unsigned:

Full Example

Unsigned Multiplication
� mul operand

� AX=AL*operand ; if byte
� DX:AX=AX*operand ; if word
� EDX:EAX=EAX*operand ; if dword

� CF, OF are set if the high order half is nonzero� CF, OF are set if the high order half is nonzero
� AF,SF,PF,ZF may be destroyed
� Unsigned multiplication

Signed Multiplication IMUL
� imul source

� AX=AL*operand ; if byte
� DX:AX=AX*operand ; if word
� EDX:EAX=EAX*operand ; if dword
� CF, OF are set if the high order half is significant� CF, OF are set if the high order half is significant

� imul register, source
� register=register*source
� CF, OF are set if the result cannot fit into register

� imul register, source, immediate
� register=source*immediate
� CF, OF are set if the result cannot fit into register

Example IMUL

Area Calculation

Unsigned Division
� div source

� Dividend = quotient*divisor+reminder
� Inputs: [implicit] dividend, [explicit] divisor
� Outputs: quotient and remainder
� Divisor=source and cannot be immediate

My Destroy AF, CF, OF, PF, SF, ZF� My Destroy AF, CF, OF, PF, SF, ZF
� Example:

� div BYTE PTR [1000]

Signed Division
� idiv divisor

� Same as idiv but quotient takes the sign of the operation

� Sign of the remainder = sign of dividend

� Sign of quotient is negative iff sign of dividend and divisor are different

Division Errors
� Division by zero

� Insufficient space in quotient

� Exampe: 2468A/2=12345 (cannot fit into AX)

Extension for division
� ; some instructions to calculate BX

� ; we want to divide BX by the word starting at [SI]

� MOV AX,BX ; move BX to AX

� DIV WORD PTR [SI] ; do division� DIV WORD PTR [SI] ; do division

� ; now quotient is in AX and remainder in DX

� What is wrong?

First Solution
� ; some instructions to calculate BX

� ; we want to divide BX by the word starting at [SI]

� MOV AX,BX ; move BX to AX

MOV DX,0� MOV DX,0

� DIV WORD PTR [SI] ; do division

� ; now quotient is in AX and remainder in DX

� What if BX was a signed number?

Second solution
� ; some instructions to calculate BX

� ; we want to divide BX by the word starting at [SI]

� MOV AX,BX ; move BX to AX

MOV DX,0FFFFH� MOV DX,0FFFFH

� DIV WORD PTR [SI] ; do division

� ; now quotient is in AX and remainder in DX

� What if BX was an unsigned or a positive number?

Correct Solution
� ; some instructions to calculate BX

� ; we want to divide BX by the word starting at [SI]

� MOV AX,BX ; move BX to AX

CWD ; convert word to double word� CWD ; convert word to double word

� IDIV WORD PTR [SI] ; do division

� ; now quotient is in AX and remainder in DX

Data Extension Instructions
� CBW

� Sign extend AL into AX

� CWD� CWD
� Sign extend AX into DX:AX

� CDQ
� Sign extend EAX into EDX:EAX

� CWDE
� Sign extend AX into EAX

Example Sign Extension

Moving with extension
� movzx Register, source

� Moves the source to register and zero extends it

� movsx Register, source

Moves the source to the register and sign extends it� Moves the source to the register and sign extends it

Full Program

ADC and SBB
� ADC dest, source

� Dest=dest+source+CF

� SBB dest, source� SBB dest, source

� Dest=dest-source-CF

� Used to add and subtract large numbers

Adding Large Numbers

Carry Flag Control

