
Yasser F. O. Mohammad

REMINDER 1: Unconditional Jmp
 Jmp statement
 Jmp offset

 Offset = register, or memory location (signed)
 Offset is added to the address of next instruction

 Jmp Types:
 Relative Jump = Interasegment Jump = changes EIP
 Far Jump = Intersegment Jump = changes CS, EIP
 Task Switch = Jump to a different task (privileged)

Offset Type Offset Size Maximum offset

Relative short 4 bytes -2147483648 2147483647

Relative near Single byte -128127

Register indirect 4 bytes -2147483648 2147483647

Memory indirect 4 bytes -2147483648 2147483647

Why do we need relative short jmp?

REMINDER 2: Conditional Jump
 J* targetStatement

 * identifies the condition to take the jump

REMINDER 3: LOOP instruction
 loop statement

 Statetement must be short distance from the instruction (-
128 127 bytes)

 Does the following:
 ECX=ECX-1
 If ECX==0 then continue to next statement
 If ECX ≠ 0 then jump to statement

 Similar to a high level For-Loop with count in ECX
for(; ECX>0; ECX--){

.

.
}

What is the stack?
 A data structure with two operations:

 push: adds on the top of the stack
 Pop: pops from the top of the stack

 Allocated using .STACK in MASM
 Of course the memory is still accessible as general memory

 Accessed by ESP (usually!!)

 Used for parameter passing during function calls
 Automatically manage ESP

 Can be used as you see fit
 You manage everything

.STACK
 Allocates a space in memory for the stack

 ESP points to the byte just above the allocated space
for the stack.

 In general ESP points to the location of the last byte
already written to the stack.

Push instruction
 push source

1. Decrements ESP by the size of source.

2. Copies source to the location pointed to by ESP.

It grows downward !!!!

Pop instruction
 pop source
 Copies source-size bytes from [ESP] to source.

 Increments ESP by the size of source.

What can we push and pop

Flags to/from the stack
 pushf/popf

 Pushes/pops the flags register (2 bytes)

 pushfd/popfd

 Pushes/pops the extended flags register (4 bytes)

All registers to/from the stack
 pusha

 Pushes all registers in this order:

 AX, CX, DX, BX, SP, BP, SI, DI

 SP value pushed is the value BEFORE pushing AX

 popa

 Pops all registers in this order:

 DI, SI, BP, SP(Discarded), BX, DX, CX, AX

 SP value is discarded after pushing not to modify
current SP

All registers to/from the stack
 pushad

 Pushes all registers in this order:

 EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

 ESP value pushed is the value BEFORE pushing EAX

 popad

 Pops all registers in this order:

 EDI, ESI, EBP, ESP(Discarded), EBX, EDX, ECX, EAX

 ESP value is discarded after pushing not to modify
current ESP

Note about pushing
 Some operating systems including Windows require

that parameters for functions are double word-aligned.

 To be safe push and pop DWORDs not WORDs

Procedures
 The way to implement functions and function calls in

IA32

 Always comes in the code segment (after .CODE)

 Has the following anatomy:

label PROC [[distance]] [[langtype]] [[visibility]] [[<prologuearg>]] [[USES
reglist]] [[, parameter [[:tag]]]]...

statements
[ret]

label ENDP

How to call a procedure
 call procedureLabel

 Does not by itself do any parameter passing

 You do parameter passing yourself!!!!!!

 Does two things

1. Pushes the return address to the stack

2. Jumps to the address of the procedure

 As in JMP, ±32K displacement is added to EIP/IP to do
the jump

How long is the return address
 NEAR

 IP (WORD)

 NEAR32

 EIP (DWORD)

 FAR

 8086: CS:IP (2 WORDs)

 80386: CS:EIP (1 WORD+1 DWORD)

Examples NEAR/FAR

Example NEAR32
Before

After

Indirect call
 CALL register

 CALL memaddress

 Calls the procedure which address is referenced

 Near version uses DWORD registers and addresses as
new EIP

 Far version can only use memory because it needs 6
bytes!!

How to pass parameters
 Push them to the stack before CALL

 Put them to known memory location before CALL

 Put them to registers before CALL

Returning from Procedures
 ret

 Returns control to the caller

 You must return the return value yourself!!!

 Does one thing

1. Pops the return address from the stack to IP, EIP, CS:IP

 This is a JMP

Returning with cleaning
 ret count

 Count is an immediate

 Indicates how many bytes the ESP should be
incremented with AFTER the return

 Used to discard input parameters on the stack

How to return a value
 Push it to the stack

 Leave it in a known memory location

 Leave it in a known register

Example

Declaration

Call

How to put procedures in a
different file
 Declare them PUBLIC in the defining file

 PUBLIC proc_name1, [proc_name1,….]

 E.g. PUBLIC Initialize

 Declare them external in the calling file

 EXTRN proc_name1:Type, [proc_name1:Type,….]

 E.g. EXTRN Initialize:NEAR32

Example

Parameter passing
 Types of parameters:

 In: Pass-by-Value
 In-out: Pass-by-Reference

 Types of variables:
 Local: specific to the procedure (visible only inside)
 Global: visible outside

 Simplest parameter passing approach
 Use registers
 Use them as global variables

 Simplest local variable approach
 Use registers

Example
 Passing two DWORDS:

 You must readjust this ESP (by subtracting 8) before
returning from the procedure. Why? How?

Stack for Parameter Passing
 Usually, we use EBP to access parameters/variables on

the stack

Stack for Local Variables

Allocate
Local
Variables

Point
To
Params

Save
Flags

Entrance Code

Exit Code

int GCD(int , int);

Stack usage with params and locals

Typical Function (PROC)

IA32 support for compilers
 enter localBytes, nestingLevel

 Nesting level = zero

 Nesting Level > zero

 Push ESP from nestingLevel-1 to 0 to the stack

 Allows nested blocks access to local variables of their parents

IA32 Support for compilers 2
 leave

 Usually used just before returning (ret)

 Does the following:

 Reverses the effects of enter on the stack

MASM support for you
 INVOKE procName, param1, param2, ….

 A directive not an instruction. Even if it does not start with
a ‘.’

 Does:
PUSH paramn

.

.

.

PUSH param1

CALL procName

Recursion
 A function directly or indirectly calling itself.

 This is one motivator to store local variables and
parameters on the stack. Why?

 This is the most common reason for stack overflow
problems

Towers of Hanoi puzzle

 Move all disks from A to B one at a time without ever
having a disk under a larger one. C can be used as
temporary location.

Towers of Hanoi Solution
 If N.Disks==1

 Move it to B

 If N.Disks>1

 Move largest N.Disks-1 to C

 Move the remaining disk (on A) to B

 Now solve the problem of moving N.Disks-1 from C to B
using A as a temporary location

Pseudo code of Towers of Hanoi

Assembly Solution Page 1

Assembly Solution Page 2

Interrupts*
 Hardware Interrupts

 Requested by hardware to avoid polling

 Controlled by the Programmable Interrupt Controller PIC

 I flag controls if the processor accepts interrupts

 Software Interrupts

 Requested in the program

 Simulates interrupts

 Has nothing to do with the PIC

How ALL Interrupts are handled*
 There are 256 different interrupt types (numbers).

 First 1 or 2K memory locations contain interrupt vectors.

 Interrupt vector of interrupt X: the address of the interrupt
handling routine (IHR) to be called when X is raised

 Interrupt number Interrupt vector (IV)

 Real: Multiply by 4 00:[IV]=address of IHR

 Protected: Multiply by 800:[IV]= descriptor of the IHR address

INT*
 INT number

1. Calculate IV=number * 4 or 8 (Real/Protected)

2. Push flags

3. Clear T and I flags (Traps and hardware interrupts)

4. Push CS

5. Read new CS from CS:[IV]

6. Push IP/EIP onto the stack

7. Read new IP/EIP from CS:[IV+2]

8. Jump to new CS:IP/EIP

Used for system calls (2 bytes) instead of FAR calls (5 bytes)

Common Interrupts*

IRET/IRETD*
 IRET

1. POP IP

2. POP CS

3. POP flags

 IRET=POPF+FAR RET

 IRET is used in real mode

 IRETD is used in protected mode (POPs EIP)

INTO*
 INTO

 If OF=1 does INT 4 otherwise nothing

 Used to check for overflows

How to call without a CALL
 S/360 (1960)

 32 GPRs
 Call is done as follows:

 Allocate space to save 32 GPRs
 Copy all GPRs to it
 Put its address in R13
 Copy ProcAddress to R15
 Jump and Link (copies IP to R14 then JMP R15)

 Return is done as follows:
 JMP R14

 Parameter Passing is done as follows:
 Put parameters in memory
 Make a list of pointers to parameters in memory at address ADDR
 MOV R1,ADDR
 Call

 NO recursive calls!!

