
MatchingPennies: An agent submitted to the

ANAC 2024 SCM league

Arnie He, Akash Singirikonda, Amy Greenwald

April 15, 2024

Abstract

1 Introduction

2 The Design of MatchingPennies

The design of MatchingPennies is simple, it only has two significant design
choices: Concurrent negotiations and calibrated loss function.

2.1 Concurrent Negotiation

MatchingPennies is based on the template of OneShotSyncAgent, for we believe
that centrally handling all existing negotiations at the same time will have a
huge profit over deciding for each response without a wholistic consideration.
The central idea for each counter all() function is to find the best combinations
so far, accept them, and then determine responses for the other partners dealing
with the quantity we still need. The center of design then lies naturally in the
function that searches for the best combination of offers. In short, we define
the standard of the value of a bundle to be quantity diff ∗ p− (1− p) ∗ profit,
where quantity diff is the gap between the quantity we need and the quantity
provided by the bundle. P is a constant that could be toggled, and in the next
section we’ll talk about the toggling of p.

2.2 Risk Management

The contexts of world are not the same even though they’re all one-shot. In some
of the worlds the agent should try to maximize its profit in each negotiations,
(somewhat equivalent to maximize prices), while in other negotiations the agent
might seek to maximize the chance of matching the quantity. (This happens
more often because the current awi world has a really small fluctuations in
the price range, and despite the times that we want to profit over the dumby

1

bots, we should seek to match the quantity). However, to determine the types
of our opponents is both complicated and resources consuming, so we propose
another strategy, that we toggle the constant p in our loss function based on
the exogenous contracts we need for the day. In short, the more quantity we
need, the more oriented towards the ’pennies’ we be(maximize for the value);
and the fewer quantity we need we maximize for the ’Matching’. That’s also
why we call the agent the ’MatchingPennies’.

3 Evaluation

4 Lessons and Suggestions

Conclusions

Pseudocode

2

Algorithm 1 Best Subset Selection

1: Initialize best total los←∞
2: Initialize best quantity diff ←∞, best indx← −1
3: for each index i and partner ids in plist do
4: offered quantity ←

∑
p∈partner ids offers[p][’QUANTITY’]

5: diff ← |offered quantity − needs|
6: total contracts cost ←

∑
p∈partner ids offers[p][’UNIT PRICE’] ×

offers[p][’QUANTITY’]
7: penalty ← 0
8: if awi.level = 0 then
9: if offered quantity < needs then

10: penalty ← penalty + diff × awi.current disposal cost
11: else
12: penalty ← penalty + diff × awi.current shortfall penalty
13: end if
14: else
15: if offered quantity < needs then
16: penalty ← penalty + diff × awi.current shortfall penalty
17: end if
18: if offered quantity > needs then
19: penalty ← penalty + diff × awi.current disposal cost
20: end if
21: end if
22: if offered quantity > needs+ 1 then
23: Continue to next iteration
24: end if
25: Compute total profit
26: Normalize total profit and diff
27: loss ← quantity cost tradeoff × diff normalized − (1 −

quantity cost tradeoff)× total profit normalized
28: if loss < best total los then
29: best quantity diff ← diff , best indx← i, best total los← loss
30: end if
31: end for
32: return best quantity diff , best indx

3

